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Abstract

We introduce a spectral notion of distance between
shapes and study its theoretical properties. We show that
our distance satisfies the properties of a metric on the
class of isometric shapes, which means, in particular, that
two shapes are at 0 distance if and only if they are iso-
metric. Our construction is similar to the recently pro-
posed Gromov-Wasserstein distance, but rather than view-
ing shapes merely as metric spaces, we define our distance
via the comparison of heat kernels. This allows us to relate
our distance to previously proposed spectral invariants used
for shape comparison, such as the spectrum of the Laplace-
Beltrami operator. In addition, the heat kernel provides a
natural notion of scale, which is useful for multi-scale shape
comparison. We also prove a hierarchy of lower bounds
for our distance, which provide increasing discriminative
power at the cost of increase in computational complexity.

1. Introduction

Many approaches have been proposed in the context of
(pose invariant) shape classification and recognition, in-
cluding the pioneering work on size theory by Frosini and
collaborators [11], the shape contexts of Belongie et al. [2],
the integral invariants of [18], the eccentricity functions of
[15], the shape distributions of [25], the canonical forms of
[10], and the Shape DNA methods in [26]. The common
idea of these methods is to compute certain metric invari-
ants, or signatures of the shapes. These signatures are then
embedded into a common metric space to facilitate compar-
ison, and shapes whose signatures have a small distance are
considered similar.

Unfortunately, the question of proving that a given fam-
ily of signatures captures proximity or similarity of shapes
in a reasonable way has hardly been addressed. In particu-
lar, the degree to which two shapes with similar signatures
are forced to be similar is in general not well understood.
Conversely, one can ask the easier question of whether the
similarity between two shapes forces their signatures to be

similar. These questions cannot be well formulated until
one agrees on notions of (1) equality and (2) similarity be-
tween shapes, such that the most similar shapes to a given
shape, are those that are considered equal to it.

One way to address these issues was suggested by
Mémoli and Sapiro [21, 22], who consider shapes as met-
ric spaces, and (1) define two shapes two be equal when
they are isometric, and (2) use the Gromov-Hausdorff dis-
tance [14] as a measure of dissimilarity between shapes.
Once this framework is adopted, a natural question arises:
whether a given family of signatures is stable under pertur-
bations of the shape in the Gromov-Hausdorff sense. Un-
fortunately, despite its generality, it has been difficult to use
the Gromov-Hausdorff framework in a natural way for ex-
plaining most of the existing shape matching procedures.
In addition, the computation of the GH distance in practice
leads to NP-hard combinatorial optimization problems.

These problems were addressed by Mémoli in [19, 20],
who defines the Gromov-Wasserstein distances based on
ideas from mass transportation. This family of distances
(1) exhibits a number of desirable theoretical features, (2)
directly yields continuous variable quadratic optimization
problems with linear constraints, and (3) provides a dissim-
ilarity measure under which a large number of shape sig-
natures can be shown to be stable. The framework of [19]
assumes that in addition to a metric, shapes are also en-
dowed with a certain notion of weight associated to each
point of the shape. In this context, stability of an invariant
signature means that one can write precise lower bounds
for the GW distance which encode a certain comparison of
the signatures in question. The signatures of [15, 18, 2, 25]
have all been shown to be stable under perturbations in the
Gromov-Wasserstein sense in [19]. More recently, certain
persistence topology based signatures have also been shown
to be GW stable [8].

Spectral Methods In this work, we aim to extend the
ideas of [19] to a different class of techniques for shape clas-
sification and shape comparison, called the spectral meth-
ods. These methods are generally based on constructions
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that use the eigenvalues and eigenfunctions of the Laplace-
Beltrami operator defined on the shape.

Perhaps the best known spectral invariant was introduced
to the shape matching community by Reuter et al. in the
remarkable [26], where the authors propose using the a
subset of the collection of all eigenvalues (spectrum) of
the Laplace-Beltrami operator of a shape as its signature
for shape retrieval and comparison. The invariance of the
spectrum of Laplace-Beltrami operator to isometric defor-
mations (deformations that leave the geodesic distance un-
changed) ensures that this signature can be used to recog-
nize the same shape in different poses. From a theoretical
point of view, however, it is not possible to fully classify
shapes using this signature, since there exist compact non-
isometric shapes whose Laplace-Beltrami operators have
the same spectra.

The work of Rustamov [27] is based on the observation
that the eigenvalues of the Laplace-Beltrami operator to-
gether with the corresponding eigenfunctions characterize
the shape up to isometry. The author introduces the Global
Point Signature (GPS) of a point on the shape, which en-
codes both the eigenvalues and the eigenfunctions of the
Laplace-Beltrami operator evaluated at that point. The his-
togram of distances [25] between the signatures of all points
is then used for shape comparison.

More recently, Sun et al. [28] and Gebal et al. [12] intro-
duced a robust and multi-scale invariant of a shape based on
the heat kernel, which arises by solving a certain partial dif-
ferential equation involving the Laplace-Beltrami operator.
Their signature, called the Heat Kernel Signature (or HKS),
is defined for every point on the shape and it is also inher-
ently multi-scale. Interestingly, Sun et al. proved that the
set of all HKS on the shape “almost always” characterizes
it up to isometry, see [28] for details.

Methods based on Heat Diffusion have also been used
to analyze graphs (See [1] and references therein), where
signatures similar to the HKS have been proven useful in
graph classification and comparison.

One of the major challenges of signature-based methods
is the choice of metric between signatures. Indeed, defin-
ing an appropriate metric between signatures is intimately
related to the appropriate notion of distance between shapes
themselves. For example, based on the work Reuter et al.
[26], one could propose (among other options) using the `2

metric between the two sets of ordered eigenvalues. This
metric, however, will tend to give more weight to larger
eigenvalues, which correspond to “high frequency” eigen-
functions. Even more dramatically, in the continuous set-
ting, this metric is not guaranteed to converge when consid-
ering the full spectrum of the Laplace-Beltrami operator of
the continuous shape.

Following [21, 22], a conceptually different approach
was recently adopted by Bronstein et al. [5] who endow

the shapes with the spectrum-based diffusion distance (in-
troduced to the applied literature by Lafon in [17]) and then
estimate the Gromov-Hausdorff distance between the re-
sulting metric spaces. The primary motivation of [5] is to
exploit the apparent stability of diffusion distances to lo-
cal changes in the topology of the shape. As a result, their
method can potentially be used to classify shapes under-
going such changes making it robust in many applications.
One of the limitations of [5] is the difficulty of establishing
the relation between their distance and different notions of
invariance. Indeed, it is unclear whether two objects whose
diffusion based GH distance is 0 are necessarily isometric
with respect to geodesic distances. Similarly, it is unclear
what is the precise notion of similarity encoded by the fact
that two shapes (endowed with the diffusion distance) are at
small GH distance.

Contributions In this paper, we define a spectral notion
of distance between shapes, called the Spectral Gromov-
Wasserstein distance and formally in Theorem 3.1 show that
our definition satisfies the properties of a metric on the col-
lection of all isometry classes of shapes. This means, in
particular, that two shapes with 0 distance are necessarily
isometric with respect to the geodesic distance. We also en-
code a scale parameter into our definition and argue how
our notion of similarity is foliated with respect to this pa-
rameter.

We also address the question of similarity between
shapes by proving, in Theorem 3.2 and Theorem 3.3, a se-
ries of lower bounds on our metric that involve previously
proposed spectral signatures. These lower bounds imply
that two shapes such that a suitably chosen distance between
their signatures is large, have to be far in terms of our spec-
tral metric. In particular, in Theorem 3.2 we prove that two
(interrelated) invariants: the HKS and the heat trace, are
both stable with respect to the metric we construct. One of
the main observations is that the heat trace contains exactly
the same information as the spectrum of [26]. A second
and third set of previously proposed ideas that we address
with our construction and relate to are those of [27] and [5].
Again, we exhibit lower bounds for our metric that estab-
lish explicit links (via Theorem 3.3 to (suitably reinterpreted
version of) those extremely interesting proposals.

At a high level, our construction is based on substituting
the heat kernels in the definition of Gromov-Wasserstein
distance for the geodesic distances. This is motivated by
classical the result by Varadhan (Lemma 2.2) which relates
these two quantities: for small t � 0, �4t ln kXpt, x, x1q �
d2
Xpx, x

1q. Using the heat kernel, however, has the advan-
tage of directly encoding a scale parameter (t), which al-
lows for multi-scale comparison. We then use measure
couplings, in the same way as done in [19] to compare
heat kernels on different shapes. Thus, our proposed dis-
similarity measure (see Definition 3.1) is infµ supt¡0 cptq �



}kXpt, �, �q � kY pt, �, �q}Lppµbµqwhere µ is a coupling be-
tween the normalized area measures on the shapes X and
Y ; p ¥ 1; and cptq is a certain function that prevents the
blow up of the heat kernels. Note that for a fixed coupling µ
we are taking supt¡0 which is to be interpreted as choosing
the most discriminative scale that tells X apart from Y.

The primary motivations for our work are (1) to provide
a formal, continuous (as opposed to discrete) treatment to
spectral-based shape comparison, (2) to inter-relate the dif-
ferent invariants introduced so far, and (3) to provide a rig-
orous framework inside which potential future spectral in-
variants can be analyzed. The hierarchy of lower bounds
that we provide further allows to compute estimates of the
spectral distance that we introduce, by increasing accuracy
at the cost of an increase in computation time. This is es-
pecially useful in shape retrieval where inexpensive shape
comparison methods can be used to quickly reject dissimi-
lar shapes.

2. Background
In this section, we review some standard concepts of

metric geometry and measure theory that will be used in
our presentation. A good reference of the former is [6]. A
reference of the latter is [9]. We also review the definitions
of the GH and GW distances and related concepts.

Definition 2.1 (Correspondence). For non-empty sets A
and B, a subset R � A � B is a correspondence (between
A and B) if and and only if (1) @ a P A there exists b P B
s.t. pa, bq P R, and (2) @ b P B there exists a P A s.t.
pa, bq P R. Let CpA,Bq denote the set of all possible corre-
spondences between sets A and B.

Definition 2.2. The support of a Borel measure ν on a met-
ric space pZ, dq, denoted by supp rνs, is the minimal closed
subset Z0 � Z such that νpZzZ0q � 0.

Given a metric space pX, dq, a Borel measure ν on X , a
function f : X Ñ R, and p P r1,8s we denote by }f}Lppνq
the Lp norm of f w.r.t. the measure ν.

Remark 2.1. When ν is a probability measure, i.e. νpXq �
1, }f}Lppνq ¥ }f}Lqpνq for p, q P r1,8s and p ¥ q.

Definition 2.3. An isometry between metric spaces
pX, dXq and pY, dY q is any bijective map ψ : X Ñ Y
s.t. dXpx, x1q � dY pψpxq, ψpx

1qq for all x, x1 P X . We
say that X and Y are isometric whenever there exists an
isometry between these spaces.

We will denote by R the collection of all compact and
connected Riemmanian manifolds without boundary. For
pM, gq P R, where g is the metric tensor on M , we will
denote by volM the Riemannian volume measure on M .

Finally, we let `2 denote the Hilbert space of all square
summable sequences and given two such sequences A �
taiu and B � tbiu we denote by A `2 B �

°
i ai bi their

inner product.

2.1. Gromov-Wasserstein distances
We now review the main features of the Gromov-

Wasserstein distance. For metric spaces pX, dXq and
pY, dY q let ΓX,Y : X � Y

�
X � Y Ñ R� be given

by
ΓX,Y px, y, x1, y1q :� ��dXpx, x1q � dY py, y1q

��. (1)

Recall the definition of the Gromov-Hausdorff distance
between (compact) metric spaces X and Y :

dGHpX,Y q � 1

2
inf
R
}ΓX,Y }L8pR�Rq (2)

where R is a correspondence between X and Y as defined
above. This defines a metric on the collection of all isome-
try classes of metric compact spaces [6, Chapter 7].

As discussed in [19, 20], there is not a unique notion of
Gromov-Wasserstein distance – different constructions lead
to different properties. In this paper we stick to the con-
struction proposed in [19] which we recall below. Follow-
ing [19], we view a given shape not just as a set of points
with a metric on them, but also assume, in addition, that a
probability measure on the (sets of) points is specified. The
resulting structure is called an mm-space.
Definition 2.4 ([14]). A metric measure space (mm-space
for short) will always be a triple pX, dX , µXq where (a)
pX, dXq is a compact metric space, and (b) µX is a Borel
probability measure on X i.e. µXpXq � 1.

Two mm-spaces pX, dX , µXq and pY, dY , µY q are called
isomorphic (or equal) iff there exists an isometry ψ : X Ñ
Y such that µXpψ�1pBqq � µY pBq for allB � Y measur-
able. We will denote by Gw the collection of all mm-spaces.

When it is clear from the context, we will denote the
triple pX, dX , µXq by only X . In the finite case, µXpxq
provides a collection of weights that signal the relative im-
portance or trustworthiness of the point x P X in relation
to the other points on the shape. Moreover, we will assume
w.l.o.g. that for all our mm-spaces X � supp rµX s.

Example 2.1 (Riemannian manifolds as mm-spaces). Let
pM, gq be a compact Riemannian manifold. Consider the
metric dM on M induced by the metric tensor g and the
normalized measure µM , that is, for all measurable C �

M, µM pCq � volM pCq
VolpMq . Then pM,dM , µM q is a mm-space.

Definition 2.5. Given two metric measure spaces
pX, dX , µXq and pY, dY , µY q we say that a measure µ on
the product space X � Y is a coupling of µX and µY iff
(1) µpA � Y q � µXpAq, and (2) µpX � A1q � µY pA

1q
for all measurable sets A � X , A1 � Y . We denote by
MpµX , µY q the set of all couplings of µX and µY .

In words, a coupling of µX and µY is a probability mea-
sure with marginals µX and µY .

Lemma 2.1 ([19]). Let µX and µY be Borel probabil-
ity measures on compact metric spaces X and Y . If



µ P MpµX , µY q, then Rpµq :� supp rµs belongs to
Cpsupp rµX s, supp rµY sq.

Definition 2.6 (Gromov-Wasserstein distance, [19]). For
p P r1,8s we define the distance dGW,p between two mm-
spaces X and Y by

dGW,ppX,Y q :� inf
µPMpµX ,µY q

1

2
}ΓX,Y }Lppµbµq. (3)

Example 2.2. For finite mm-spaces X and Y , MpµX , µY q
can be regarded as the set of all matrices M � ppmijqq
with non-negative elements such that

°
imij � µY pjq

and
°
jmij � µXpiq for all i � 1, . . . ,#X and j �

1, . . . ,#Y . Therefore, for finite p ¥ 1,

dGW,ppX,Y q :�
1

2

�
�inf
M

¸
i,j

¸
i1,j1

�
ΓX,Y pxi, yj , xi1 , yj1 q

�p
mij mi1j1

�


1{p

,

which leads to a quadratic optimization problem with con-
tinuous variables and linear constraints.

The GW distance satisfies many useful properties, see
[19] for a more complete list.

Theorem 2.1 ([19]). Let p P r1,8s, then

(a) dGW,p defines a metric on the set of all (isomorphism
classes of) mm-spaces.

(b) For any two mm-spaces X and Y , dGW,ppX,Y q ¥
dGW,qpX,Y q whenever 8 ¥ p ¥ q ¥ 1.

2.2. Heat kernels on compact manifolds.
Our primary goal is to extend the Gromov-Wasserstein

distance to the spectral setting. The definition we give in
the following section is based on the fundamental solution
of the heat equation, also known as the heat kernel. In this
section we introduce the heat kernels on compact manifolds
and list some of their key properties. For detailed exposi-
tion of the material presented here, we refer the reader to
excellent survey [13].

Let X be a compact Riemannian manifold, the Laplace-
Beltrami operator ∆X is a generalisation of the Laplacian
to non-euclidean domains and maps functions defined onX
to other such functions. If X is compact then ∆X has a dis-
crete set of eigenvalues λi (called the spectrum) and eigen-
functions ζi, which can be chosen to define an orthonormal
basis to the set of square-integrable functions on X– we
make this assumption henceforth.

Remark 2.2 (Weyl’s formula). One has the follow-
ing asymptotic formula [7] for the eigenvalues of the
Laplace-Beltrami operator on a compact and connected d-
dimensional Riemannian manifold M :

λ` � 4π2

�
`

ωdVol pMq


2{d

as `Ñ8.

Remark 2.3 (Scaling). Given a d-dimensional Riemannian
manifold pM, gq with eigenvalues λi and eigenfunctions ζi,
and a ¡ 0, the eigenvalues and eigenfunctions of pM,a2gq
are λi{a2 and ζi{ad{2.

Remark 2.4. As mentioned in the introduction, based on
Reuter et al. [26] one could consider the spectrum of the
LB operator on a manifold as its signature and compare
signatures of two manifolds by computing the `2 norm of
the difference between the two sets of ordered eigenval-
ues. Although the practical associated signature (which
uses cropped versions of the spectra) shows very good dis-
crimination power, the previous remarks tells us that the re-
sulting theoretical notion of distance would not be well de-
fined when comparing, for example, pM, gqwith pM,a�2 gq
for some a � 1.1 Therefore, as was observed in [26], in
practice, one has to be careful to only consider a subset of
eigenvalues or by doing appropriate scaling.

The Heat Operator on X is defined as: Ht � e�t∆X ,
where ∆X is the Laplace-Beltrami operator on X . The
operators Ht and ∆X have the same eigenfunctions and
if λ is an eigenvalue of ∆X , then e�λt is an eigenvalue
of Ht corresponding to the same eigenfunction. Simi-
larly to the Laplace-Beltrami operator, the Heat Operator
is invariant under isometric changes to the manifold. It is
well-known [7] that for any X P R, there exists a con-
tinuous function kX : R� � X � X Ñ R such that
Htfpxq �

³
X
kXpt, x, x1qfpx1qvolXpdx1q where volXpdx1q

is the volume form at x1 P X . The minimal function kX
that satisfies the equation above, is called the heat kernel
on X . For compact X , the heat kernel has the following
eigen-decomposition:

kXpt, x, x1q �
8̧

i�0

e�λitζipxqζipx1q, (4)

where λi is the ith eigenvalue (each counted the number of
times equal to its multiplicity) and ζi is the corresponding
eigenfunction of the Laplace-Beltrami operator ∆X .

Example 2.3. For all x, x1 P Rd and t ¡ 0, the heat kernel
on Rd is given by kRd pt, x, x

1q � 1
p4πtqd{2

exp
�
� }x�x1}2

4t

	
.

The heat kernel is also related to the geodesic distances
on the manifold for small values of t:

Lemma 2.2 ([24]). For any X P R,

lim
tÓ0

�� 4t ln kXpt, x, x1q
� � d2

Xpx, x1q,

for all x, x1 P X . Here dXpx, x1q is the geodesic distance
between x and x1 on X.

For compact manifolds, the long-term behavior of the
heat-kernel is given explicitly: limtÑ8 kXpt, x, x1q �

1In this case, }Λ � Λ1}`2 � |a2 � 1| � }Λ}`2 , where Λ � tλiu
8
i�0,

Λ1 � ta2λiu, and λi is the ith eigenvalue of pM, gq. Now, Weyl’s asymp-
totic expansion guarantees that }Λ}`2 � 8 and hence the proposed dis-
tance between spectra is infinity as well.



1
VolpXq . In other words, as t goes to infinity, the heat dis-
tribution on X converges to a constant,2 regardless of the
initial distribution.

Heat Kernel Signature and Heat Trace

From Lemma 2.2 it is clear that two manifolds X and Y
are isometric if and only if there exists a surjective map φ :
X Ñ Y such that kXpt, x, x1q � kY pt, φpxq, φpx

1qq for
all x, x1 P X and t P R�. This means that the set of all
heat kernel functions uniquely characterizes the shape up to
isometry. However, in practice, this set can be rather large.
The Heat Kernel Signature, recently introduced to computer
graphics by Sun et al. [28] is defined as a restriction of the
heat kernel to the diagonal times the volume of the shape:3

hksX : X � R� Ñ R�, px, tq ÞÑ Vol pXq � kXpt, x, xq.

It is a well known that the HKS of a point x is related
to the scalar curvature sXpxq for small values of t [23]:
hksXpt, xq � p4πtq�d{2

°8
i�0 ait

i as tÑ 0 where d is
the dimension of X, a0 � Vol pXq and a1 � Vol pXq �
1
6sXpxq.

For a given X P R let HX : R� � R� Ñ r0, 1s be
defined by HXpt, sq � µX

 
x P X| hksXpx, tq ¤ s

(
. In

other words, for a fixed t ¡ 0 and s ¡ 0, HXpt, sq gives
the (normalized) area of the set of points on X whose HKS
at scale t is below the threshold s. Here, µX denotes the
normalized area measure (recall Example 2.1).

One can further aggregate (average, actually) Heat Ker-
nel Signatures at all points on the manifold to obtain the
Heat Trace:

KXptq :�
1

Vol pXq

»
X

hksXpt, xqvolXpdxq :�
8̧

i�0

e�λit, (5)

where λi is, again, the ith eigenvalue of ∆X . Simi-
larly to the Heat Kernel Signature, the heat trace con-
tains a lot of geometric information about the manifold,
as can be seen, from the following well known expan-
sion: KXptq � p4πtq�d{2

°8
i�0 uit

i as tÑ 0, where
u0 � Vol pXq , u1 �

1
6

³
X
spxqvolXpdxq. Note that for 2-

dimensional manifolds (surfaces) without boundary, u1 �
1
3π χpXq by the Gauss-Bonnet theorem, where χpXq is the
Euler characteristic of X . See [26] for an application of
these expansions to shape analysis.
Remark 2.5 (The heat trace and the shape DNA). It is well
known and easy to show that the spectrum tλiu can be de-
duced from the heat trace KXptq : R� Ñ R. Indeed, λ0 �
inf

 
a ¡ 0 s.t. limtÑ8 eatKXptq � 0

(
and the multiplic-

ity of λ0, N0 � limtÑ8 eλ0tKXptq. Both λ1 and its multi-
plicity can be obtained from: K 1

Xptq � KXptq �N0e
�tλ0 ,

and this process can be iterated to the whole spectrum.

2Or alternatively, kXpt, x, x1q converges to the uniform density.
3We are slightly modifying the definition in [28] up to a multiplicative

factor. This invariant is a very well known subject in the literature dealing
with the heat kernel [13].

Thus, knowledge of the Heat Trace is equivalent to that of
the spectrum, which suggests a way to formally analyze the
Shape DNA of [26] from the point of view of KXptq.

Diffusion distances and Rustamov’s invariant
In 1994 Berard et al [4] introduced the idea of embedding
a Riemannian manifolds into a Banach space via a spectral
type of embedding that uses the heat kernel. This idea is
deeply connected to the proposal of diffusion distances in-
troduced in the applied literature in [17]. In mode detail,
consider C0pr0,8s, `2q endowed with the norm Θpγ, σq :�
supt}γptq � σptq}`2 , t P r0,8su. For each t ¡ 0, let
cptq :� e�t

�1
. Consider now the map from X P R (with

orthonormal base of eigenfunctions of the Laplace-Beltrami
operator tζiu and eigenfunctions tλiu) to C0pr0,8s, `2q
that assigns to x P X the element

IX rxsptq � cptq

"
e�

λi
2 tζipxq

*
; t P r0,8s. (6)

It can be seen that this embedding is continuous, and it is
clear that

ΘpIX rxs, IX rx1sq � sup
t¡0

cptq � dspec
X;tpx, x1q

where dspec
X;tpx, x1q :� �

kXpt, x, xq � kXpt, x1, x1q �
2kXpt, x, x1q

�1{2 will be called the diffusion distance on X
at scale t (which coincides with the definition of the diffu-
sion distance given in [17]). Note that the use of cptq here
avoids the blow up as t Ó 0 of the usual definition of the
diffusion distance introduced in [17].4

We consider another useful invariant of any X P R: for
each t ¡ 0 define GXp�, tq : r0,8q Ñ r0, 1s to be total
(normalized) mass of pairs of points px, x1q in X � X s.t.
dspec
X;tpx, x

1q ¤ s. Of course this is mathematical language
for the histogram of inter-point distances between pairs of
points. Precisely,

GXps, tq �
�
µX b µX

��
px, x1q| d

spec
X;tpx, x

1q ¤ s



.

Remark 2.6. In [5], the authors propose to compute the
GH distance between shapes X,Y which are endowed with
the diffusion metric at a fixed scale t. We show that if in-
stead one computes the GW distance between such shapes,
one obtains a lower bound for the spectral notion of metric
between shapes that we construct in this paper.

Remark 2.7 (The GPS embedding of Rustamov). Similarly
to the spectral embedding of Berard et al, Rustamov [27]
proposes embedding X P R into `2 via the map RX : X Ñ
`2 defined by

X Q x ÞÑ
"

1?
λi
ζipxq

*

His shape matching proposal is to consider a certain ver-
sion of the shape distributions idea [25] in the embed-
ded space. Namely, for a given shape X , he proposes to

4Roughly speaking, for a d-dimensional Riemannian manifold X , the
heat kernel behaves like t�d{2 for t � 0 (and therefore it blows up). Hence
cptq � e�t

�1
is ’strong’ enough to keep cptq � kXpt, �, �q bounded as t

approaches 0 for any d P N.



compute the histogram of distances }RX rxs � RX rx
1s}`2 ,

x, x1 P X . We will show below, that a certain reformu-
lation of the GPS+Shape distributions procedure of Rusta-
mov can be expressed using the invariant GX defined above,
and that this yields is a lower bound for the spectral notion
of distance we construct in this paper. The proposed rein-
terpretation is to look at IX rxs instead of RXpxq and to
use GX as a proxy for the shape distributions invariant he
proposed to use. Note that this is correct since by defini-
tion of IX , }IX rxsptq � IX rx

1sptq}`2 � cptq � dspec
X;tpx, x

1q.
Also, note that for all t ¡ 0 and x, x1 P X , by (4) we have
IX rxsptq `2 IX rx

1sptq �
�
cptq

�2
� kXpt, x, x

1q which can
be compared to Rustamov’s motivation for the embedding
he proposed: namely, the fact that RX rxs `2 RX rx1s �
GXpx, x

1q for all x, x1 P X where GX is the Green func-
tion on X , see [27, Section 4].

2.3. The notion of scale
As mentioned earlier, the time parameter t in the heat

kernel can be naturally interpreted as a certain notion
of scale. For example, the Heat Kernel Signature of
a point x reflects differential properties of the surface
at x (such as curvature) for small value of t, whereas
limtÑ8 kXpt, x, xq � 1

VolpXq independent of x.
Here we provide a point of view based on homogeniza-

tion of partial differential equations [3] which allows to in-
terpret t as scale. Consider the real line with metric given
by the periodic C2 function g : R Ñ R� with period 1
such that γ�1 ¤ gpxq ¤ γ for some fixed γ ¡ 0. One can
regard Mg � pR, gq as a weighted Riemannian manifold
[13] under the standard Lebesgue measure. The geodesic
distance on Mg admits an explicit expression: dgpx, x1q �³x
x1
g1{2psq ds, x ¥ x1. For any metric g satisfying the

conditions above, one can consider the resulting Laplace-
Beltrami operator on Mg to be ∆g � d

dx

�
1

gpxq
d
dx

	
. Let kg

denote the heat kernel associated to Mg . Note in particular
that when g � g0 ¡ 0 constant, dg0 px, x1q � pg0q1{2|x � x1|,

and kg0pt, x, x
1q �

a
g0
4πte

�g0 px�x1q2

4t , x, x1 P R.
One would expect that for t Ñ 8, the heat kernel

kgpt, �, �q looks like the heat kernel kḡpt, �, �q corresponding
to a certain constant metric ḡ. This would be in agreement
with the intuition that large values of t offer a coarse scale
view of the underlying metric structure. This intuition can
be made precise alluding to a result due to Tsuchida:
Theorem 2.2 ([30]). There exists a positive constant C
such that supx,x1PR |kgpt, x, x

1q � kḡpt, x, x
1q| ¤ C

t , for all
t ¡ 0, where ḡ �

³1

0
gpxq dx.

Example 2.4. Pick 0   ε   1 and m P N and let gpxq :�
1 � ε � sinp2πm � xq. Then ḡ � 1. Tsuchida’s theorem
then guarantees that as t approaches infinity,

�
�kgpt, x, x1q�

1?
4πt

expt�px � x1q2{4tu
�
�   C

t , for all x, x1 P R, that
is, kg looks like the heat kernel corresponding to a flat one
dimensional profile.

Using this intuition, we can argue that the parameter t
can be interpreted as a notion of scale. This means that
intuitively, for a fixed x, kXpt, x, �q is a function that reflects
the the properties of a geodesic neighborhood of x. As t
grows, the so does the size of the neighborhood, but the
information becomes more and more smoothed out.
3. Spectral Gromov Wasserstein metric

In this section we carry out an adaptation of the Gromov-
Wasserstein distance to the class of Riemannian mani-
folds. A similar construction is possible for the Gromov-
Hausdorff distance.

Our construction is similar to the one proposed by Kasue
and Kumura [16], but different in that we utilize the formal-
ism of mm-spaces and coupling measures. This allows us
to obtain explicit bounds that encode several interesting in-
variants, see §3.1.

The heat kernel provides a naturally multi-scale decom-
position of the geometry of a Riemannian manifold. We
want to make this appear explicitly in the definition of a
metric on the collection of isometry classes of R. For
X,Y P R and t P R� define Γspec

X,Y,t : R� � X � Y �

X � Y Ñ R� by

pt, x, y, x1, y1q ÞÑ
�
�Vol pXq � kXpt, x, x1q �Vol pY q � kY pt, y, y1q

�
�. (7)

Definition 3.1. For X,Y P R and p P r1,8s let

dspec
GW,p pX,Y q :� inf

µPMpµX ,µY q
sup
t¡0

cptq � }Γspec
X,Y,t}Lppµbµq,

where cptq � e�at
�1

for some a ¡ 0.5
Remark 3.1 (Multi-scale aspect of the definition). Our def-
inition exploits the scale parameter t of the heat kernel in
order to define a spectral version of the GW distance. This
means that two Riemannian manifolds will be considered to
be similar in the spectral GW sense if and only if they are
similar at all scales t. This is a encoded in the definition of
our metric by first taking the supremum over all t ¡ 0, and
then choosing the best coupling. The use of the parameter t
in this fashion provides a natural foliation of the notion of
approximate isometry between Riemannian manifolds.
Theorem 3.1. For all p P r1,8s, dspec

GW,p p, q defines a met-
ric on the collection of all isometry classes of R. Moreover,
for any X,Y P R, dspec

GW,p pX,Y q ¥ dspec
GW,q pX,Y q for all

1 ¤ q ¤ p ¤ 8.

Proof. The proof of the triangle inequality is easy. Let X,Y, Z P
R be s.t. dspec

GW,p pX,Y q   ε1 and dspec
GW,p pY,Zq   ε2. Let

µ1 P MpµX , µY q and µ2 P MpµX , µY q be s.t. cptq �
}Γspec
X,Y,t}Lppµ1bµ1q   ε1 and cptq � }Γspec

Y,Z,t}Lppµ2bµ2q   ε2 for
all t P R�. For fixed t P R�, by the triangle inequality for the
absolute value:

Γspec
X,Y,tpx, y, x1, y1q ¤ Γspec

X,Z,tpx, z, x1, z1q � Γspec
Z,Y,tpz, y, z1, y1q,

(8)

5Compare with Definition 2.6. The reason for the use of cptq is to
prevent the blow up of the quantities involved as t Ó 0.



for all x, x1 P X , y, y1 P Y and z, z1 P Z. Now, by the Gluing
Lemma [31, Lemma 7.6], there exists a probability measure µ P
PpX � Y � Zq with marginals µ1 on X � Z and µ2 on Z � Y .
Let µ3 be the marginal of µ on X � Y . Using the fact that µ has
marginal µZ P PpZq on Z and the triangle inequality for the Lp

norm (i.e Minkowski’s inequality) and (8), we obtain

}ΓX,Y,t}Lppµ3bµ3q � }ΓX,Y,t}Lppµbµq
¤ }ΓX,Z,t � ΓZ,Y,t}Lppµbµq
¤ }ΓX,Z,t}Lppµbµq � }ΓZ,Y,t}Lppµbµq
� }ΓX,Z,t}Lppµ1bµ1q � }ΓZ,Y,t}Lppµ2bµ2q

¤ pε1 � ε2q{cptq.

Hence dspec
GW,p pX,Y q ¤ supt¡0 cptq � }Γspec

X,Y,t}Lppµ3bµ3q  
ε1 � ε2. The conclusion follows now by taking ε1 Ñ
dspec
GW,p pX,Y q and ε2 Ñ dspec

GW,p pY,Zq.

We prove that dspec
GW,p pX,Y q � 0 implies that X and Y are

isometric. Assume first that p P r1,8q. Let pεnq � R� be s.t.
εn Ñ 0 and pµnq �MpµX , µY q be s.t.

}Γspec
X,Y,t}Lppµnbµnq   εn{cptq for all n P N and t P R�. (9)

Since MpµX , µY q is compact for the weak topology on
PpX � Y q (see [31, pp. 49]), we can assume that up to extrac-
tion of a sub-sequence, µn converges to some µ0 PMpµX , µY q.
We assume that µn Ñ µ0 weakly. Then, µn b µn Ñ µ0 b µ0

weakly as well. Since for fixed t P R�, Γspec
X,Y,t is continuous on

X � Y � X � Y and hence bounded (since we are considering
only compact manifolds), one has that
x

X�Y

x

X�Y

�
Γ

spec
X,Y,t

�p
dµn b µn Ñ

x

X�Y

x

X�Y

�
Γ

spec
X,Y,t

�p
dµ0 b µ0

as n Ò 8. By (9) we obtain that for all t ¡ 0
}Γspec
X,Y,t}Lppµ0bµ0q � 0. It follows that Γspec

X,Y,tpx, y, x1, y1q � 0
for all px, yq, px1, y1q P Rpµ0q which is equivalent to

Vol pXq � kXpt, x, x1q � Vol pY q � kY pt, y, y1q,

for all px, yq, px1, y1q P Rpµ0q. By Lemma 2.1, Rpµ0q P
CpX,Y q. Consider a map φ : X Ñ Y s.t. px, φpxqq P Rpµ0q
for all x P X . Then by the above we find that Vol pXq �
kXpt, x, x1q � Vol pY q � kY pt, φpxq, φpx1qq for all t ¡ 0 and
x, x1 P X . By Lemma 2.2, it follows then that dXpx, x1q �
dY pφpxq, φpx1qq for all x, x1 P X . Similarly, we can find a map
ψ : Y Ñ X s.t. dY py, y1q � dXpψpyq, ψpy1qq for all y, y1 P Y .
It follows that ζ :� φ � ψ is an isometry from Y into itself and
since Y is compact, ζ has to be surjective. It follows that φ (and
also ψ) is an isometry.

Now, for the case p � 8, pick pεnq � R� be s.t. εn Ñ 0 and
let pµnq � MpµX , µY q be s.t. }Γspec

X,Y,t}L8pµnbµnq   εn{cptq
for all n P N and t P R�. Then, by Remark 2.1, (9) holds as well
for finite p and the argument above applies.

3.1. Lower bounds
In the two theorems below, we establish two hierarchies

of different lower bounds for the spectral GW distance.

Theorem 3.2. For all X,Y P R and p ¥ 1,

dspec
GW,8 pX,Y q

pAq

¥

sup
t¡0

cptq � inf
µPMpµX ,µY q

}hksXp�, tq � hksY p�, tq}Lppµq
pBq

¥

sup
t¡0

cptq �
» 8
0

��HXpt, sq �HY pt, sq
�� ds pCq¥

sup
t¡0

cptq �
����KXptq �KY ptq

����.
Remark 3.2. Observe that in the context of standard
GH/GW distances, the same bound as in (A) would be triv-
ial since the restriction of ΓX,Y to tpx, y, x, yq, x P X, y P
Y u is 0.
Remark 3.3. Note that in the lower bounds above the order
of the supt¡0 and the infµ are inverted with respect to the
order that appears in the definition of dspec

GW,p p, q. This will
allow us to obtain lower bounds at different scales and then
consider the most discriminative scale. It is obvious that we
can take the sup over a smaller, possibly finite, collection
of interesting and/or computable scales T and we will still
obtain a lower bound for dspec

GW,p p, q.
Remark 3.4 (About bound (C) and Shape-DNA). Since
knowledge of the heat trace is equivalent to knowledge of
the spectrum, lower bound (C) can be interpreted as a ver-
sion of the Shape DNA signature of Reuter et al. [26] that
is compatible with the spectral GW distance. This was one
of the goals of our project.
Remark 3.5. The question of the quality of the discrimina-
tion provided by the heat trace is of course very important
from both the theoretical and the practical points of view. It
is known that there exist isospectral Riemannian manifolds
that are not isometric. Examples of these constructions are
the spheres of Szabo [29]. An interesting theoretical prob-
lem is that of finding non-isometric X,Y P R s.t. they
have (1) the same HKS, (2) they have the same distribu-
tion of HKSs (but different HKSs), and (3) have the same
heat traces (but different distributions of HKSs).
Remark 3.6. Notice that in practical applications, com-
puting the lower bound given by Theorem 3.2 (A) involves
solving a Linear Optimization Problem with nX �nY vari-
ables (and nX � nY constraints) where nX (resp. nY ) is
the number of vertices in X (resp. Y ). This may be expen-
sive for large models. Therefore, lower bounds (C) which
is based on the distribution functions associated to the heat
kernel signature seems more suitable in practice.
Theorem 3.3. For all X,Y P R,

dspec
GW,8 pX,Y q

pA1q

¥

sup
t¡0

cptq �
�
dGW,8

�
Xt, Yt

�
2 pB1q

¥

sup
t¡0

cptq �
�

1

2

» 8
0

��GXps, tq � GY ps, tq�� ds

2

where Xt �
�
X, dspec

X;t, µX
�

and Yt �
�
Y, dspec

Y ;t , µY
�
.



Remark 3.7. Note that the lower bound (A’) establishes
a link with the proposal of [5] whereas lower bound (B’)
embodies the computation of a procedure similar to the
one proposed by Rustamov, see Remark 2.7. In particu-
lar, it follows that for any t ¡ 0, 1

cptqd
spec
GW,8 pX,Y q ¥

�
dGW,8pXt, Ytq

�2
. It is not known whether for a fixed

t ¡ 0, dGW,8pXt, Ytq � 0 implies that X and Y are
isometric. Furthermore, it would be interesting to inves-
tigate the properties of the RHS of (A’) as to whether it pro-
vides a (pseudo) metric on R and whether it is equivalent to
dspec
GW,8 p, q. Also, it is of interest to understand the relation-

ship between the two hierarchies of lower bounds we have
established.

4. Discussion
Our proposal hinges on a specialization of the origi-

nal Gromov-Wasserstein notion of distance between mm-
spaces. Which we call spectral Gromov-Wasserstein dis-
tance. This distance incorporates spectral information di-
rectly via the use of heat kernels. At this stage we are able to
prove that our proposed metric satisfies all the properties of
a metric on the collection R of compact Riemannian man-
ifolds without boundary, and the extension to a larger class
of shapes will be subject of future efforts. The fact that the
GW-spectral metric encodes scale in a natural way makes
it suitable for multi-scale matching of shapes. Besides the
lower bounds we have presented, others are possible and in
the future we plan to tackle this. The practical performance
of our ideas remains to be tested.
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